Phép tính vi tích phân hàm một biến


Chương I. Hàm số một biến số

Mọi vật xung quanh ta đều biến đổi theo thời gian. Chúng ta có thể nhận thấy điều đó qua sự chuyển động cơ học của các vật thể: ô tô, máy bay; sự thay đổi của các đại lượng vật lý: nhiệt độ, tốc độ, gia tốc; sự biến động kinh tế trong một xã hội: Giá cổ phiếu, lãi suất tiết kiệm,…. Tất cả các loại hình đó được gán một tên chung là đại lượng hay hàm số, nó phụ thuộc vào đối số nào đó, chẳng hạn là thời gian. Xem xét hàm số tức là quan tâm đến giá trị, tính chất và biến thiên của nó. Việc đó đặt ra như một nhu cầu khách quan của con người và xã hội.

Chương II. Phép tính vi phân hàm số một biến số

Phép tính vi phân của hàm một biến số gắn liền với phép tính đạo hàm của hàm số. Khái niệm đạo hàm là một trong những tư tưởng quan trọng nhất của giải tích. Trong chương 2, chúng ta đã đặt vấn đề xem xét hàm số, nhưng vấn đề cốt lõi của hàm số là tốc độ biến thiên của nó chưa được xét đến. Nhờ vào khái niệm đạo hàm người ta có thể khảo sát toàn diện một đại lượng biến thiên. Khái niệm đạo hàm gắn liền với các đại lượng vật lý: vận tốc tại thời điểm t của một vật chuyển động, nhiệt dung của vật thể ở nhiệt độ to, cường độ dòng điện,v.v…; gắn liền với các hiện tượng hoá học: tốc độ phản ứng hoá học ở thời điểm t; gắn liền với các bài toán kinh tế xã hội: vấn đề tăng trưởng kinh tế, phương án tối ưu trong giao thông, trong sản xuất kinh doanh, v.v….

Chương  III. Tích phân bất định

Chương  IV. Tích phân xác định

Chương III và chương IV trình bày phép tính tích phân, đây là phép tính cơ bản thứ hai của toán cao cấp. Hơn nữa, nó còn là phép tính ngược của phép tính vi phân. Chính vì thế để tính tích phân nhanh chóng, chính xác cần thông thạo phép tính đạo hàm của hàm số.

Chương  V. Lý thuyết chuỗi

Bài toán tính giá trị gần đúng của một hàm số tại điểm x1 gần với điểm x0 mà giá trị f(x0) đã biết rất hay gặp trong thực tế: bài toán lập biểu đồ, bài toán nội suy,…. Việc tính toán trở nên đơn giản nhờ các phép tính cơ bản +, -, ., / và luỹ thừa khi đã khai triển hàm số thành chuỗi Taylor. Việc biểu diễn một tín hiệu phức tạp thành các tín hiệu đơn giản hoặc các sóng phức tạp thành các sóng đơn giản chính là nhờ vào việc khai triển một hàm số thành chuỗi Fourier. Để có được cơ sở giải thích cho các bài toán dạng trên cần nắm vững các nội dung của lý thuyết chuỗi.

%d bloggers like this: